47 research outputs found

    Infections With the Tick-Borne Bacterium "Candidatus Neoehrlichia mikurensis” Mimic Noninfectious Conditions in Patients With B Cell Malignancies or Autoimmune Diseases

    Get PDF
    We present a comprehensive study of a new infectious disease in immune compromised patients, neoehrlichiosis. The clinical picture of the disease can be misleading because the symptoms may be misinterpreted to be a worsening of the underlying diseas

    Global phylogeny of Treponema pallidum lineages reveals recent expansion and spread of contemporary syphilis.

    Get PDF
    Funder: Queensland GovernmentSyphilis, which is caused by the sexually transmitted bacterium Treponema pallidum subsp. pallidum, has an estimated 6.3 million cases worldwide per annum. In the past ten years, the incidence of syphilis has increased by more than 150% in some high-income countries, but the evolution and epidemiology of the epidemic are poorly understood. To characterize the global population structure of T. pallidum, we assembled a geographically and temporally diverse collection of 726 genomes from 626 clinical and 100 laboratory samples collected in 23 countries. We applied phylogenetic analyses and clustering, and found that the global syphilis population comprises just two deeply branching lineages, Nichols and SS14. Both lineages are currently circulating in 12 of the 23 countries sampled. We subdivided T. p. pallidum into 17 distinct sublineages to provide further phylodynamic resolution. Importantly, two Nichols sublineages have expanded clonally across 9 countries contemporaneously with SS14. Moreover, pairwise genome analyses revealed examples of isolates collected within the last 20 years from 14 different countries that had genetically identical core genomes, which might indicate frequent exchange through international transmission. It is striking that most samples collected before 1983 are phylogenetically distinct from more recently isolated sublineages. Using Bayesian temporal analysis, we detected a population bottleneck occurring during the late 1990s, followed by rapid population expansion in the 2000s that was driven by the dominant T. pallidum sublineages circulating today. This expansion may be linked to changing epidemiology, immune evasion or fitness under antimicrobial selection pressure, since many of the contemporary syphilis lineages we have characterized are resistant to macrolides

    Prevalence of Enterotoxigenic Escherichia coli -associated Diarrhoea and Carrier State in the Developing World

    Get PDF
    This study assesses the importance of enterotoxigenic Escherichia coli (ETEC) as a diarrhoeal agent in developing countries. Odds ratios were calculated for incurring ETEC-associated diarrhoea based on data reported between 1970 and 1999. Carriage of ETEC was associated with diarrhoea in children aged less than five years, except for hospitalized infants aged 0-11 month(s) and children aged 1-4 year(s) at outpatient clinics. Two hundred and eighty million episodes of diarrhoea due to ETEC were seen yearly among those aged less than five years, and close to 50 million children of this age group were asymptomatic carriers of ETEC. Every 7th diarrhoeal episode in children aged less than one year and close to 25% of diarrhoeal cases in children aged 1-4 year(s) were due to ETEC. A child born in a developing country is likely to experience 0.5 diarrhoeal episodes per year caused by ETEC until the age of five years, after which the yearly incidence drops to 0.1. To conclude, ETEC remains an important diarrhoeal pathogen among children in the developing world

    A chair of one's own

    No full text

    Reply to Raoult

    Full text link

    Exploring a cascade Heck-Suzuki reaction based route to kinase inhibitors using design of experiments

    No full text
    Design of Experiments (DoE) has been used to optimize a diversity oriented palladium catalyzed cascade Heck-Suzuki reaction for the construction of 3-alkenyl substituted cyclopenta[b]indole compounds. The obtained DoE model revealed a reaction highly dependent on the ligand. Guided by the model, an optimal ligand was chosen that selectively delivered the desired products in high yields. The conditions were applicable with a variety of boronic acids and were used to synthesize a library of 3-alkenyl derivatized compounds. Focusing on inhibition of kinases relevant for combating melanoma, the library was used in an initial structure-activity survey. In line with the observed kinase inhibition, cellular studies revealed one of the more promising derivatives to inhibit cell proliferation via an apoptotic mechanism

    Binding of the fibrillar CS3 adhesin of enterotoxigenic Escherichia coli to rabbit intestinal glycoproteins is competitively prevented by GalNAcÎČ1-4Gal-containing glycoconjugates

    No full text
    We have attempted to characterize the binding specificity of the coli surface 3 (CS3) subcomponent of colonization factor antigen II of enterotoxigenic Escherichia coli, by means of an immunoblot method in which the binding of fimbriated bacteria to sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated rabbit intestinal cell membranes was evaluated. Isolated CS3 fibrillae as well as bacteria expressing CS3 on their surface bound to several intestinal cell membrane structures, i.e., structures present in the electrophoretic front and in the 30- to 35-kDa range and, most prominently, 120- to 140-kDa structures. Delipidization and protein digestion of the rabbit brush borders revealed that CS3 bound to structures of a proteinaceous nature. Sodium meta-periodate oxidation of the intestinal cell membranes abolished all their CS3 binding activity, indicating that CS3 bound to carbohydrate moieties of glycoproteins. The binding of CS3 to the separated intestinal proteins could also be inhibited by preincubation with the lectin derived from Maackia amurensis, indicating that CS3 bound to galactoproteins in the rabbit intestine. Inhibition experiments using equimolar amounts of various gangliosides demonstrated that GM1, asialo-GM1, and GM2 inhibited the binding of CS3 equally well, whereas GM3 was not as effective. These results suggested that the critical CS3 binding epitope consisted of the carbohydrate sequence GalNAcÎČ1-4Gal. This was supported by electron microscopic experiments showing that this disaccharide, O linked to bovine serum albumin via a spacer, localized around CS3-positive bacteria but not at all around corresponding CS3-negative mutants. Furthermore, CS3-expressing bacteria recognized this neoglycoprotein when it was immobilized on nitrocellulose. The GalNAcÎČ1-4Gal disaccharide has also been implicated as a binding structure for other pathogenic bacteria such as enteropathogenic E. coli and Pseudomonas aeruginosa

    Comparative Genomics of Clinical Isolates of the Emerging Tick-Borne Pathogen Neoehrlichia mikurensis

    No full text
    Tick-borne ‘Neoehrlichia (N.) mikurensis’ is the cause of neoehrlichiosis, an infectious vasculitis of humans. This strict intracellular pathogen is a member of the family Anaplasmataceae and has been unculturable until recently. The only available genetic data on this new pathogen are six partially sequenced housekeeping genes. The aim of this study was to advance the knowledge regarding ‘N. mikurensis’ genomic relatedness with other Anaplasmataceae members, intra-species genotypic variability and potential virulence factors explaining its tropism for vascular endothelium. Here, we present the de novo whole-genome sequences of three ‘N. mikurensis’ strains derived from Swedish patients diagnosed with neoehrlichiosis. The genomes were obtained by extraction of DNA from patient plasma, library preparation using 10× Chromium technology, and sequencing by Illumina Hiseq-4500. ‘N. mikurensis’ was found to have the next smallest genome of the Anaplasmataceae family (1.1 Mbp with 27% GC contents) consisting of 845 protein-coding genes, every third of which with unknown function. Comparative genomic analyses revealed that ‘N. mikurensis’ was more closely related to Ehrlichia chaffeensis than to Ehrlichia ruminantium, the opposite of what 16SrRNA sequence-based phylogenetic analyses determined. The genetic variability of the three whole-genome-sequenced ‘N. mikurensis’ strains was extremely low, between 0.14 and 0.22‰, a variation that was associated with geographic origin. No protein-coding genes exclusively shared by N. mikurensis and E. ruminantium were identified to explain their common tropism for vascular endothelium
    corecore